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We perform simulations of continuum gradient percolation to measure the percolation threshold of systems
of fully penetrable disks of two different radii. As a function of volumetric proportion v, the percolation
threshold �c�v ,�� is approximately symmetric about v=0.5 for a fixed ratio � of the radii. However, the
difference from symmetry is strongly statistically significant. We also improve, by an order of magnitude, the
measurement of the percolation threshold for disks of equal radius: �c

*=0.676 347 5�6�.
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I. INTRODUCTION

Measurements of the continuum percolation threshold of
various models have received much attention in the litera-
ture. One of these models is a Boolean model with grains of
some specified shape positioned upon the points of an under-
lying Poisson process �1,2�. For example, in two dimensions,
models that have been recently studied include equal-sized
fully penetrable disks �3,4�, disks with two different radii
�5–8�, aligned and randomly oriented squares �9�, aligned
squares of two different side lengths �10�, and randomly ori-
ented ellipses �11,12�. In three dimensions, recent studies
include the percolation thresholds of equal-sized fully pen-
etrable spheres �13�, spheres with two different radii �14�,
aligned and randomly oriented cubes �9�, aligned cubes of
two different side lengths �10�, and randomly oriented ellip-
soids �12�. Furthermore, in three dimensions, the void perco-
lation threshold has been measured for equal-sized spheres
and spheres of two different radii �15–17� as well as for
randomly oriented ellipsoids �18�.

Continuum percolation also continues to be studied from
the perspective of stochastic geometry as well as statistical
physics, and multiple mathematical techniques have been de-
veloped to rigorously analyze percolation thresholds
�19–25�. Tight rigorous bounds have been published on the
percolation threshold for disks and aligned squares �25�; in
the latter case, the tightness of these bounds actually exceeds
the best current measurement of the threshold from computer
simulations.

In this paper, we reconsider measurement of the percola-
tion threshold of binary dispersions of disks with two differ-
ent radii R and �R, where 0���1. Also, the proportion of
the smaller and larger disks is p and 1− p, respectively, so
that 0� p�1, and the disks are positioned independently of
each other and the underlying Poisson field. The parameters
p and � determine the critical volume fraction for the binary
dispersion.

Recently �26�, it was suggested that the percolation

threshold may be written in terms of � and the volumetric
proportion of smaller disks v, which is given by

v =
p���R�2

p���R�2 + �1 − p��R2 =
p�2

p�2 + 1 − p
. �1�

It was conjectured that the percolation threshold is a sym-
metric function of v, so that

�c�v,�� = �c�1 − v,�� . �2�

This was based upon available numerical results, and a the-
oretical argument for this symmetry was also presented.

In this paper, we first use efficient numerical techniques to
find this threshold to much higher precision. We show with a
high degree of confidence that the graphs of �c�v ,�� are not
symmetric in v, so that Eq. �2� cannot be exactly true. We
also show that the theoretical arguments given in �26� are not
sufficient to show that � is symmetric in v.

Second, with our numerical results, we study the value of
v*���, defined to be the value of v which maximizes ��v ,��
for a prescribed �. Specifically, we investigate the conjecture
that

v*��� = 1/2 for all � , �3�

or, equivalently, that p*���=1/ �1+�2�. This behavior is con-
sistent with an earlier conjecture that, for small �, p*���=1
−�2 �7�. Although asymmetry does not preclude Eq. �2�, it
does suggest that Eq. �3� is false. In any case, we find that
v*��� is indeed near 1 /2, but we cannot conclusively dis-
prove Eq. �3� because of the inherent numerical errors in
measuring v*���. However, this negative result does not con-
tradict our conclusion that the curves, overall, are asymmet-
ric.

In Sec. II, we summarize the techniques used to produce
our improved numerical estimates for �c�v ,��. In Sec. III,
we discuss the asymmetry of �c�v ,�� in light of these im-
proved estimates, and examine the theoretical argument
given in �26� that these curves should be exactly symmetric.
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II. BINARY DISPERSIONS

A. Frontier-walk method

A variety of techniques were used in the two- and three-
dimensional studies mentioned in the Introduction. In this
paper, we primarily use the technique of continuum gradient
percolation, simulating disks that are centered on the points
of an underlying inhomogeneous Poisson field �1�. Selected
measurements were confirmed by using the cluster growth
technique �9,12,13,27�.

To begin, an inhomogeneous Poisson field is dynamically
simulated in a unit square. That is, instead of simulating the
entire Poisson field inside of the square all at once, only the
portions of the square that are nearest to the current location
of the walk are simulated. Dynamic simulation provides sig-
nificant savings with regard to both time and computational
resources. As the points of the inhomogeneous Poisson field
are dynamically generated, they are assigned to be the cen-
ters of disks of radius R or �R with probabilities 1− p and p,
respectively. For each point, this assignment is made inde-
pendently of both the assignments for all other points and the
Poisson field itself.

The percolation threshold is measured using the con-
tinuum frontier-walk method �4,28,29,34�, which we now
describe. To start the simulation, the right half of the top of
the square is initialized with overlapping disks with centers a
radius apart. The walk is started at the leftmost point of these
initial disks and initially traverses the lower portion of the
disks. After a while, the walk continues inside the square. By
carefully reinitializing the Poisson field as the walk
progresses, a walk of infinite length may be generated on a
computer with finite memory �4�.

The percolation threshold is estimated by measuring the
average location of the frontier, or the average location of the
arcs on the edge of the percolating cluster which naturally
forms �3,4,28�. We denote these estimated values by
�c�v ,� ,L�, where the length scale L is defined to be the ratio
between the side of the square and the radius R of the larger
disks. In this study, we used five choices of length scales:
L=12 500�2n for 0�n�4.

B. Error analysis

Each estimate �c�v ,� ,L� has a standard error ����, which
depends on the number of configurations attempted. In this
study, we chose a desired value of ���� as a stopping condi-
tion for the algorithm. Also, we chose � to be a function of
only � and not of v or L. Due to computational cost, we
chose to perform somewhat less refined measurements of
�c�v ,�� for ��0.7 than for 0.76���0.96.

This data are then fitted to the model

�c�v,�,L� =
m�v,��

L
+ �c�v,�� , �4�

where m�v ,�� and �c�v ,�� are computed from the data. This
computation of �c�v ,�� has the effect of extrapolating to the
limit L→�.

Figure 1 illustrates this fitting for four different choices of
�v ,��; the y intercepts of the regression lines correspond to

the estimates presented here. The error bars in Fig. 1 repre-
sent one standard deviation. The wider error bars for �
�0.70 are reflected in Fig. 1 for the case of �=0.35. We
observed that the residuals of the data were consistent with
the standard error ����, thus providing an important verifi-
cation of the appropriateness of the model �4�. We also found
that the correlation coefficient of the five points tended to
decrease as � decreased.

Since, for each �, ���� is chosen the same for all length
scales, the standard error for the estimate �c�v ,�� is given by
�32�

standard error = ����� �
i=1

n

�1/Li
2�

n�
i=1

n

�1/Li
2� − ��

i=1

n

�1/Li��2 ,

�5�

where L1 , . . . ,Ln are the lengths scales that are used. Using
this formula, the standard error �that is, one standard devia-
tion� is 6.8�10−6 for all estimates reported for ��0.76,
while the analogous error is 3.4�10−6 for �	0.8 �33�.

To produce these results to this level of accuracy, a bank
of 2.6-GHz microcomputers were used for a collective
13.6 yr of runtime to generate and measure an aggregate of
16.0 trillion frontier arcs. Larger values of L and smaller
values of � required greater computational effort. To give
one example, the five length scales used for the case �v ,��
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FIG. 1. Estimates of the percolation threshold �c�v ,� ,L� for
four different choices of �v ,��. For �
1, the five length scales L
=12 500�10n for n=0, . . . ,4 are simulated. Due to computational
cost, the error bars for ��0.7 are twice as wide as for 0.76��
�0.96. For the special case of equal-sized disks, very narrow error
bars are prescribed, and the values of L used are 31 250, 40 000,
50 000, 64 000, 105, 2�105, 5�105, and 106. The y intercepts of
the regression lines correspond to the estimates of �c�v ,�� reported
in this paper, which may be found in �33� as well as Eq. �6� for the
case of equal-sized disks.
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= �0.2,0.5� each used from 1.7 to 2.4 billion frontier arcs,
totaling more than 10 billion frontier arcs.

III. MEASUREMENTS OF THE PERCOLATION
THRESHOLD

A. Results

These improved estimates for �c�v ,�� are given in �33�
and are plotted in Figs. 2–4. Where comparable, these esti-
mates are within the error bars of the most precise previous
estimates �7�. Our improved estimates are also clearly con-
sistent with the conjecture that the percolation threshold is
minimized in the monodisperse limit of �=1 �7,14,21�.

We also reconsidered measurement of the critical volume
fraction �c

* for disks of equal size. We repeated, with the
more powerful computational resources now available to us,
the measurement of �c

* using continuum gradient percolation
as described in �4�. To improve accuracy for this important

special case, estimates with somewhat narrower error bars
than for the true binary dispersions considered above are
computed. Also, we used all of the above values of L as well
as L=31 250, 40 000, 64 000, 5�105, and 106.

With the narrower error bars used for equal-sized disks,
we observed that the residuals of the model �4� did not fol-
low the assumptions of the standard linear regression model.
First, the maximum residual was roughly 3.4 standard devia-
tions. Second, there was an observable curve in the data
points, so that the residuals were heteroscedastic. These ob-
servations are not surprising since the empirical model �4� is
expected to be valid only for large values of L. Accordingly,
we chose not to use the values of L=12 500 and L=25 000 to
estimate the percolation threshold for equal-sized disks. By
omitting these smallest values of L, the residuals appeared to
follow the assumptions of the standard linear regression
model. �We note that none of these difficulties were observed
for true binary dispersions, which were measured with wider
error bars in this study.�

All of these refinements are reflected in Fig. 1. With this
work, our updated measurement of the percolation threshold
for equal-sized disks is

�c
* = 0.676 347 5�6� , �6�

where the parentheses indicate an error of one standard de-
viation in the last decimal place. This result adds an extra
decimal place of accuracy to the most precise previous esti-
mate �4�,

�c
* = 0.676 339�6� . �7�

We made several attempts to fit the data in �33� to a single
function; the best function that we found is

�c�v,�� = 1 − e−��v,��, �8�

where

��v,�� = �c
*a���vb����1 − v�c��� �9�

with �c
*=−ln�1−�c

*� and the values of a���, b���, and c���
are presented in �33�. Equation �9� is proportional to the
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FIG. 2. �Color online� Estimates of the percolation threshold
�c�v ,�� for 0.10���0.35. The error bars for each point are com-
parable to the thickness of the lines on the scale of this figure.
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FIG. 3. �Color online� Estimates of the percolation threshold
�c�v ,�� for 0.40���0.70. The error bars for each point are com-
parable to the thickness of the lines on the scale of this figure.
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FIG. 4. �Color online� Estimates of the percolation threshold
�c�v ,�� for 0.76���0.96. The error bars for each point are com-
parable to the thickness of the lines on the scale of this figure.
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probability density function �pdf� of a beta distribution with
parameters b��� and c��� �30�.

The form �8� is motivated by the well-known expression
for the volume fraction of a Boolean model �1,31�. The terms
v and 1−v terms in Eq. �9� are motivated by the following
boundary conditions on �c�v ,��:

�c�0,�� = �c�1,�� = �c�v,0� = �c�v,1� 	 �c
*; �10�

the degenerate case v=1, �=0 is obviously not considered in
the above boundary conditions.

B. Analysis of symmetry

We notice that the graphs in Figs. 2–4 are approximately
symmetric. However, most of these curves are slightly but
demonstrably asymmetric. To give one example, Fig. 5 re-
produces the graph of �c�v ,0.5� from Fig. 3; the dashed line
shows the graphs of �c�1−v ,0.5�. If �c�v ,0.5� were per-
fectly symmetric, then the two graphs should be identical.
However, the figure clearly shows that �c�v ,0.5� is slightly
asymmetrical about the line v=0.5.

For a more quantitative analysis, we define X�v ,�� to be a
random variable representing measurements of �c�v ,��.
Since each measurement reported in �33� is formed by aver-
aging many simulations, we may reasonably assume each
X�v ,�� has a normal distribution with mean �c�v ,�� and
standard deviation ����.

To test the symmetry of �c�v ,��, we consider the test
statistic

T1��� = �
n=1

12
�X�0.04n,�� − X�1 − 0.04n,���2

2����2 . �11�

Our null hypothesis is that, for all n, X�0.04n ,�� and
X�1−0.04n ,�� have the same mean. Under this null hypoth-
esis, T1��� has a �2 distribution with 12 degrees of freedom,
and so we may use its complementary cumulative distribu-

tion function �cdf� to test the symmetry of �c�v ,��.
The test statistics T1��� and the observed significance lev-

els are presented in �33�. For all ��0.84, the asymmetry of
�c�v ,�� is strongly statistically significant. In fact, even if
the standard errors were ���� were arbitrarily increased by a
factor of 10, the asymmetry would remain statistically sig-
nificant for ��0.6. We therefore conclude the �c�v ,�� is not
perfectly symmetric about v=0.5.

With this numerical evidence in mind, we now turn to the
heuristic argument presented in �26�. The authors of that
work write v of Eq. �1� in terms of the numbers of small and
large disks, Na and Nb, respectively:

v =
Nava

Nava + Nbvb
, �12�

where va=���R�2 and vb=�R2 are the volumes of the two
disk types, and Na / �Na+Nb�= p. In terms of these quantities,
the volume fraction occupied by the disks in the binary sys-
tem is given by �=1−e−�, where

� =
Nava + Nbvb

V
�13�

and V is the total volume.
Now, Consiglio et al. made the observation that if one

replaces Na and Nb by

Na� =
vb

va
Nb = Nb/�2,

Nb� =
va

vb
Na = Na�2, �14�

then the value of �� given by Eq. �13� remains unchanged.
Thus, they argued, if the original system were at the perco-
lation threshold, then the transformed system would also be
at the threshold, presumably because the volume fraction �
is unchanged. The transformed particle numbers in Eq. �14�
imply v�=1−v, and so this argument would seem to prove
Eq. �3�.

The apparent flaws of this argument are as follows: �i�
Just because the volume fraction is unchanged when making
the above transformation, it does not follow that the trans-
formed system will also be at the critical threshold—being at
the threshold involves more than having a certain volume
fraction. �ii� Furthermore, it should be noted that in the trans-
formation �14�, besides making v�=1−v, it also follows that
the total number of particles N=NA+NB transforms in a very
specific way:

N� = N�1 − p

�2 + �2p� . �15�

In other words, just making v�=1−v is not sufficient to
make ��=1−�; N must also transform as above. There is no
obvious reason why this transformation in N should be made,
and if it were made, whether it should keep the system at a
critical point. Equation �15� in fact, follows from the require-
ment that � remain unchanged when v�=1−v. Thus there
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FIG. 5. �Color online� Estimates of the percolation threshold
�c�v ,0.5�. The dashed line is the graph of �c�1−v ,0.5�, showing
that �c�v ,0.5� is slightly asymmetric about the line v=0.5. The
error bars for each point are comparable to the thickness of the lines
on the scale of this figure.
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appears to be no theoretical reason that Eq. �2� should be
true.

We also note that the symmetry of a curve may be mea-
sured with the skewness, or the ratio of the centralized third
moment to the cube of the standard deviation. For the em-
pirical fit given by Eq. �9�, the skewness is given by

skewness =
2�c��� − b����
2 + b��� + c���


1 + b��� + c���
b���c���

. �16�

The computed skewness values for the empirical fit �9� is
shown in �33�.

C. Analysis of maximum values

We observe in �33� that the maximum value of �c�v ,��
typically occurs near v=0.5. However, in several cases, the
largest measured value of �c�v ,�� does not occur exactly at
v=0.5.

To test whether �c�v ,�� is maximized at v=0.5 for each
�, we consider the test statistic

T2�h,�� =
X�0.5,�� − M

����
, �17�

where

M = max�X�0.5 + h,��,X�0.5 − h,��� �18�

and X�v ,�� and ���� are as before. Our null hypothesis is
that �c�0.5,��=�c�0.5±h ,��. Large values of T2�h ,��
would encourage rejection of the null hypothesis in favor of
the alternative hypothesis that the mean of X�0.5,�� is in fact
the largest of the three.

We now compute the distribution of T2�h ,�� under the
null hypothesis. Without loss of generality, we may convert
to standard units and take the common mean and standard
deviation of the three random variables to be 0 and 1, respec-
tively. Then the pdf of M is �30�

fM�x� = 2f�x�F�x� , �19�

where � and  are the pdf and cumulative distribution func-
tion �cdf� of a standard normal distribution. Therefore the pdf
of T2 is �30�

fT2
�y� = 

−�

�

f�x + y�fM�x�dx = 
−�

�

2f�x�f�x + y�F�x�dx ,

�20�

so that the complementary cdf is

P�T2 	 t� = 
t

� 
−�

�

2f�x�f�x + y�F�x�dxdy

= 
−�

�

2f�x�F�x��1 − F�x + t��dx . �21�

Numerical computation of this integral gives the right-tail
observed significance level.

In �33�, we present the test statistics and observed signifi-
cance levels for T2�0.02,�� and T2�0.06,��. For ��0.84, we
have good statistical evidence that �c�0.5,�� is larger than
�c�0.5±0.06,��. However, we cannot make this determina-
tion for �	0.88; this makes sense due to the flatness of these
curves in Fig. 4.

We now turn to the case h=0.02. As seen in �33�, we have
good statistical evidence that �c�0.5,�� is larger than
�c�0.5±0.02,�� for ��0.2. Unfortunately, for �	0.25, we
do not have enough evidence to reject the null hypothesis
that the means are the same. We note that, in this simulation
for �=0.76, our computation of T2�0.02,0.76� did yield a
small observed significance level. However, since this did
not occur for other comparable values of �, we choose to
retain the null hypothesis even for �=0.76.

On the other hand, none of the test statistics T2�0.02,��
are particularly negative, as evidenced by the fact that only
one observed significance level is close to 1. A test statistic
significantly less than zero would be evidence for the alter-
native hypothesis that either of �c�0.5±h ,�� is larger than
�c�0.5,��. Therefore, for �	0.25, we also have no reason to
think that �c�0.5,�� is smaller than either �c�0.48,�� or
�c�0.52,��.

We now summarize our findings in terms of v*���, the
value at which �c�v ,�� is maximized. For ��0.2, we are
confident that 0.48
v*���
0.52. For ��0.84, we are con-
fident that 0.44
v*���
0.56. However, we do not have suf-
ficient statistical evidence at this time for a more precise
determination of v*���.

For the empirical fit given by Eq. �8�, we find that

v*��� =
b���

b��� + c���
. �22�

These estimates of v*��� are presented in �33� and tend to be
slightly less than 0.5. While both this direct empirical fit and
the overall asymmetry of �c�v ,�� suggest that �c�v ,�� is not
maximized at v=0.5, the statistical errors in the data do not
allow us to conclusively say that v*����0.5. Perhaps, with
more refined studies, it can be shown conclusively that the
peak is not at v=0.5.

IV. CONCLUSIONS

We have used the frontier-walk method of continuum gra-
dient percolation to measure the percolation threshold �or
critical volume fraction� �c�v ,�� as a function of �, the ratio
of the smaller and larger disk radii, and v, the volumetric
proportion of the smaller disks. We have shown that the con-
jectured symmetry of �c�v ,�� as a function of v does not
hold; while the function is nearly symmetric, the asymmetry
is quite unmistakable, as seen quite clearly in Fig. 5. We
have pinpointed where the argument for symmetry in �26� is
incomplete. We have also separately studied the statistics on
the location of the peak of the curve, but cannot say unam-
biguously that it is not at v=1/2.
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While �c�v ,�� is not exactly symmetric, its near symme-
try is notable, and there is at present no theoretical reason for
this behavior. A systematic theory that would predict the be-
havior of �c�v ,��, as opposed to an empirical fit such as Eq.
�8�, would be a welcome addition to the percolation litera-
ture.
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